\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [228]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 82 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a (A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*a*(A+3*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)+2/3*A*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/s
ec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {4098, 3889} \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a (A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}} \]

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(2*a*(A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*A*Sqrt[a + a*Sec[c + d*x]]
*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 4098

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} (A+3 B) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a (A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.68 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 (2 A+3 B+A \cos (c+d x)) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{3 d \sqrt {\sec (c+d x)}} \]

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(2*(2*A + 3*B + A*Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(3*d*Sqrt[Sec[c + d*x]])

Maple [A] (verified)

Time = 4.28 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.70

method result size
default \(\frac {2 \left (A \cos \left (d x +c \right )+2 A +3 B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{3 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(57\)
parts \(\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d \sqrt {\sec \left (d x +c \right )}}\) \(94\)

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(A*cos(d*x+c)+2*A+3*B)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \, {\left (A \cos \left (d x + c\right )^{2} + {\left (2 \, A + 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2/3*(A*cos(d*x + c)^2 + (2*A + 3*B)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos
(d*x + c) + d)*sqrt(cos(d*x + c)))

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )}\right )}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))/sec(c + d*x)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.45 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.63 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (3 \, \cos \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 3 \, \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \sin \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 2 \, \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )\right )} A \sqrt {a} + 12 \, \sqrt {2} B \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{6 \, d} \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/6*(sqrt(2)*(3*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*
d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*sin(1/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A*sqrt(a) + 12*sqrt(2)*B*sqrt(a)*sin(1/2*d*x + 1/2*c))/
d

Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 14.62 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.99 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (4\,A\,\sin \left (c+d\,x\right )+6\,B\,\sin \left (c+d\,x\right )+A\,\sin \left (2\,c+2\,d\,x\right )\right )}{3\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(3/2),x)

[Out]

(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x))^(1/2)*(4*A*sin(c + d*x) + 6*B*sin(c
 + d*x) + A*sin(2*c + 2*d*x)))/(3*d*(cos(c + d*x) + 1))